Table of Contents
दिए गए डेटा सेट से शोर को दूर करने के लिए एक विशेष एल्गोरिथम का उपयोग करके डेटा स्मूथिंग को निष्पादित किया जाता है। दी गई प्रक्रिया को डेटा के महत्वपूर्ण पैटर्न को बाहर खड़ा करने की अनुमति देने के लिए जाना जाता है। डेटा स्मूथिंग सुरक्षा कीमतों में पाए जाने वाले रुझानों की भविष्यवाणी करने में मदद कर सकता है।
जैसे ही डेटा संकलित हो जाता है, किसी भी प्रकार की अस्थिरता या अन्य प्रकार के शोर को हटाने या कम करने के लिए इसे प्रभावी ढंग से हेरफेर किया जा सकता है। इसे डेटा स्मूथिंग की प्रक्रिया के रूप में जाना जाता है।
डेटा स्मूथिंग प्रक्रिया के पीछे मुख्य अवधारणा यह है कि यह विभिन्न पैटर्न और प्रवृत्तियों की भविष्यवाणी के लिए सरलीकृत परिवर्तनों की पहचान करने में सक्षम है। यह व्यापारियों या सांख्यिकीविदों के लिए एक महत्वपूर्ण उपकरण के रूप में कार्य करता है, जिन्हें बहुत सारे डेटा से निपटने की आवश्यकता होती है - जिन्हें अक्सर काफी जटिल माना जाता है, ऐसे पैटर्न खोजने के लिए जो अन्यथा देखना संभव नहीं होगा।
कुछ दृश्य प्रतिनिधित्व के साथ इसे समझाने के लिए, आपको एक वर्ष के लिए किसी कंपनी X के स्टॉक का चार्ट मान लेना चाहिए। दिए गए चार्ट पर, दिए गए स्टॉक के लिए प्रत्येक व्यक्तिगत उच्च बिंदु दिए गए निचले बिंदुओं को बढ़ाते हुए कम किया जा सकता है। यह चार्ट पर एक आसान वक्र सुनिश्चित करेगा। इससे निवेशकों को आने वाले भविष्य में स्टॉक के प्रदर्शन के बारे में प्रभावी भविष्यवाणी करने में मदद मिलती है।
डेटा स्मूथिंग के लिए कई तरीके हैं जिन्हें प्रभावी ढंग से लागू किया जा सकता है। कुछ सामान्य तरीकों में मूविंग एवरेज, रैंडम वॉक, रैंडम मेथड, सीजनल एक्सपोनेंशियल स्मूथिंग, सिंपल एक्सपोनेंशियल और लीनियर एक्सपोनेंशियल स्मूथिंग शामिल हैं।
स्टॉक सहित प्रमुख वित्तीय साधनों के समग्र व्यवहार का वर्णन करने के लिए डेटा स्मूथिंग के लिए रैंडम वॉक विधि का सबसे अधिक उपयोग किया जाता है। कुछ विशेषज्ञ निवेशक यह मानते हैं कि सुरक्षा की कीमत के पिछले आंदोलन और उसके संबंधित भविष्य के आंदोलन के बीच कोई संबंध नहीं है।
दूसरी ओर, रैंडम वॉक विधि कुछ भविष्य के डेटा को ग्रहण करने के लिए जानी जाती है और यह तथ्य कि दिए गए डेटा बिंदु कुछ यादृच्छिक चर के साथ पहले उपलब्ध डेटा बिंदु के बराबर होने जा रहे हैं। मूविंग एवरेज स्मूथिंग मेथड का उपयोग ज्यादातर सुनिश्चित करने की अवधारणा में किया जाता हैतकनीकी विश्लेषण और दिए गए यादृच्छिक मूल्य आंदोलनों से अस्थिरता को छानते हुए संबंधित मूल्य कार्रवाई को सुचारू करने में मदद करता है। दी गई प्रक्रिया को पिछली कीमतों पर आधारित माना जाता है।
डेटा स्मूथिंग प्रक्रिया को रुझानों की पहचान में मदद करने के लिए उपयोगी माना जाता हैअर्थव्यवस्था, विशिष्ट व्यावसायिक उद्देश्य, और अन्य प्रतिभूतियाँ जैसे उपभोक्ता भावना, स्टॉक, और बहुत कुछ।
Talk to our investment specialist
उदाहरण के लिए, एकअर्थशास्त्री समग्र खुदरा बिक्री जैसे विशिष्ट संकेतकों के लिए मौसमी समायोजन सुनिश्चित करने के लिए डेटा को सुचारू करने में सक्षम है। यह मासिक पर होने वाली मौजूदा विविधताओं को कम करके प्राप्त किया जाता हैआधार जैसे गैस की कीमतें या छुट्टियां।