कम से कम वर्ग विधि एक गणितीय प्रतिगमन विश्लेषण रूप है जिसका उपयोग डेटा के एक सेट के लिए सर्वोत्तम फिट की रेखा दिखाने के लिए किया जाता है। यह डेटा बिंदुओं के बीच संबंध का एक दृश्य प्रदर्शन प्रदान करता है। 1795 में कार्ल फ्रेडरिक गॉस को कम से कम वर्ग विधि की व्युत्पत्ति का श्रेय दिया जाता है। यह डेटा बिंदु एक ज्ञात स्वतंत्र चर और एक अज्ञात आश्रित चर के बीच संबंध का प्रतिनिधित्व करता है।
दूसरे शब्दों में, कम से कम वर्ग विधि अध्ययन किए जा रहे डेटा बिंदुओं के बीच सर्वोत्तम फिट के लाइन प्लेसमेंट के लिए समग्र तर्क प्रदान करती है। इस पद्धति का सबसे आम अनुप्रयोग एक सीधी रेखा बनाना है जो संबंधित समीकरणों के परिणामों से उत्पन्न त्रुटियों के वर्गों के योग को कम करता है। इन समीकरणों को अवशिष्ट चुकता किया जा सकता है जो उस मॉडल के आधार पर देखे गए मूल्य और प्रत्याशित मूल्य में अंतर के परिणाम हैं।
रिग्रेशन विश्लेषण विधि डेटा बिंदुओं के एक सेट से शुरू होती है जिसे एक्स और वाई-अक्ष ग्राफ पर प्लॉट किया जाना है। एक विश्लेषक स्वतंत्र और आश्रित चर के बीच संबंधों को समझाने के लिए सबसे उपयुक्त रेखा उत्पन्न करने के लिए कम से कम वर्ग विधि उदाहरण का उपयोग करेगा। इस विश्लेषण के अंतर्गत आश्रित चरों को ऊर्ध्वाधर y-अक्ष पर चित्रित किया जाता है कि स्वतंत्र चरों को क्षैतिज X-अक्ष क्यों दिखाया जाता है। इसने सबसे अच्छी फिट लाइन के लिए समीकरण बनाया जो कि कम से कम वर्ग विधि से निर्धारित होता है।
हालांकि, इस तरह का समीकरण एक गैर-रैखिक कम से कम वर्ग समस्या के साथ मौजूद नहीं है। गैर-रैखिक कम से कम वर्ग समस्या का कोई बंद समाधान नहीं है और आमतौर पर पुनरावृत्ति द्वारा हल किया जाता है।
सर्वोत्तम फिट की रेखा आमतौर पर कम से कम वर्ग सूत्र की विधि से निर्धारित होती है जो डेटा बिंदुओं के बीच संबंध बताती है। सर्वोत्तम-फिट समीकरणों की रेखा कंप्यूटर सॉफ़्टवेयर मॉडल के माध्यम से निर्धारित की जा सकती है जिसमें विश्लेषण के लिए आउटपुट का सारांश शामिल होता है। यहां गुणांक और सारांश आउटपुट परीक्षण किए जा रहे चर की निर्भरता की व्याख्या करते हैं।
डेटा में, यदि आप दो चरों के बीच एक लीनियर संबंध देखते हैं, तो वह रेखा जो इस रेखीय संबंध के लिए सबसे उपयुक्त होती है, उसे न्यूनतम-वर्ग प्रतिगमन रेखा के रूप में जाना जाता है। यह रेखा डेटा बिंदुओं से प्रतिगमन रेखा तक लंबवत दूरी को कम करती है।
Talk to our investment specialist