Table of Contents
सरासरी परतावा ही एका कालावधीत उत्पन्न झालेल्या परताव्यांच्या मालिकेची गणितीय सरासरी असते. साधी सरासरी काढल्याप्रमाणे सरासरी परताव्याची गणना केली जाते. संख्या एका बेरीजमध्ये एकत्र जोडल्या जातात आणि नंतर बेरीज सेटमधील संख्यांच्या गणनेने विभाजित केली जाते.
सरासरी परतावा aपोर्टफोलिओ तुमच्या गुंतवणुकीने ठराविक कालावधीत किती चांगले काम केले आहे हे स्टॉक्स दाखवू शकतात. यामुळे भविष्यातील परताव्याचा अंदाज लावण्यासही मदत होते. परताव्याची साधी सरासरी ही एक सोपी गणना आहे, परंतु ती फारशी अचूक नाही. अचूक परताव्याची गणना करण्यासाठी, विश्लेषक वारंवार भौमितिक सरासरी परतावा किंवा पैसे-भारित परतावा वापरतात.
अनेक परतावा उपाय आहेत. तीन सर्वात लोकप्रिय आहेत:
सरासरी परताव्याची गणना करण्यासाठी, विविध उपाय आणि मार्ग आहेत. तथापि, सर्वात प्रचलित सरासरी परतावा सूत्र आहे:
सरासरी परतावा = परताव्याची बेरीज / परताव्यांची संख्या
येथे, साधा वाढीचा दर हा समतोल किंवा मूल्यांच्या कार्यांपैकी एक आहे जो प्रारंभ आणि समाप्त होतो. प्रारंभ मूल्यातून अंतिम मूल्य वजा करून हे समजले जाते. त्यानंतर, आउटपुट प्रारंभ मूल्याने विभाजित केले जाते.
तर, वाढ दर सूत्र आहे:
वाढीचा दर = (BV – EV) / BV
येथे,
Talk to our investment specialist
सरासरी परताव्याच्या उदाहरणांपैकी एक म्हणजे साधे अंकगणितीय सरासरी. उदाहरणार्थ, समजा तुम्ही कुठेतरी गुंतवणूक केली आहे. आणि, दरवर्षी, पाच वर्षांसाठी, तुम्ही खालील परतावा मिळवला:
5%, 10%, 15%, 20% आणि 25%
जर तुम्ही त्यांना एकत्र जोडले आणि संख्या 5 ने विभाजित केली तर तुमचा सरासरी परतावा मोजला जाईल. याचा अर्थ, पाच वर्षांत तुम्हाला सरासरीच्या १५% परतावा मिळाला.
सरासरी परतावा मोजण्याचे ऐतिहासिक उपाय विचारात घेतल्यास, गणनेचा एक मार्ग म्हणजे भौमितिक सरासरी. भौमितिक सरासरी परताव्याला बर्याचदा टाइम-वेटेड रेट ऑफ रिटर्न (TWRR) म्हणून ओळखले जाते, हे लक्षात घेऊन की, खात्यातील विविध आवक आणि पैशांच्या बहिर्गमनामुळे कालावधीत निर्माण झालेल्या चुकीच्या वाढीच्या पातळीचा प्रभाव वगळतो.
दुसरीकडे, मनी-वेटेड रिटर्न रेट (MWRR) मध्ये रोख प्रवाहाची वेळ आणि आकार समाविष्ट असतो, ज्यामुळे पैसे काढणे, व्याज देयके, लाभांश पुनर्गुंतवणूक आणि ठेवींवर प्राप्त झालेल्या पोर्टफोलिओ परताव्यासाठी ते एक प्रभावी उपाय बनते.
सरासरी परताव्याच्या तुलनेत, भौमितिक सरासरी नेहमीच कनिष्ठ राहते. तथापि, भौमितिक सरासरी वापरण्याचा एक फायदा असा आहे की गुंतवलेल्या रकमेची अचूक संख्या जाणून घेण्याची आवश्यकता नाही. ही गणना पूर्णपणे परताव्याच्या आकड्यांवर केंद्रित आहे.
भौमितिक सरासरी ही अधिक अचूक गणना आहे. भौमितिक माध्य वापरण्याचा फायदा असा आहे की गुंतवलेली वास्तविक रक्कम माहित असणे आवश्यक नाही. ही गणना "सफरचंद ते सफरचंद" ची तुलना सादर करते जेव्हा अनेक गुंतवणुकींच्या कार्यप्रदर्शन अधिक विविध कालावधीत पाहतात.
भौमितिक सरासरी परताव्याला टाइम वेटेड रेट ऑफ रिटर्न (TWRR) असेही म्हणतात.
भौमितिक सूत्र आहे:
[(1+रिटर्न1) x (1+रिटर्न2) x (1+रिटर्न3) x ... x (1+परतावा)]1/n - 1
परताव्याचा सरासरी दर (ARR) ही सरासरी रक्कम आहेरोख प्रवाह गुंतवणुकीच्या आयुष्यावर व्युत्पन्न. ARR सहसा वार्षिक केले जाते. याचा हिशेब नाहीपैशाचे वेळेचे मूल्य. म्हणूनच अनेकजण मोठ्या आर्थिक निर्णयांचा विचार करताना इतर मेट्रिक्ससह ARR वापरतात. सरासरी परतावा आणि ARR या दोन्ही सामान्यतः सापेक्ष कार्यप्रदर्शन पातळी निर्धारित करण्याच्या पद्धती वापरल्या जातात.
मागील रिटर्न लिहिताना वार्षिक परतावा चक्रवाढ केला जातो. दुसरीकडे, सरासरी परतावा महत्त्वाचा नाहीकंपाउंडिंग. सरासरी वार्षिक परतावा, साधारणपणे, वेगवेगळ्या इक्विटी गुंतवणुकीच्या परताव्याचे मूल्यांकन करण्यासाठी वापरला जातो. परंतु, ते संयुग असल्याने, वार्षिक सरासरी परतावा हा पुरेसा विश्लेषण मेट्रिक मानला जात नाही. अशा प्रकारे, बदलत्या परताव्याचे मूल्यांकन करण्यासाठी क्वचितच वापरले जाते. शिवाय, वार्षिक परताव्याची गणना नियमित माध्यमाद्वारे केली जाते.
अंतर्गत परताव्यासाठी परिणामकारकता आणि मोजमाप सुलभ असूनही, आपण हे लक्षात ठेवले पाहिजे की सरासरी परताव्यात विविध प्रकारचे तोटे आहेत. ते नाहीt खाते विविध प्रकल्पांसाठी ज्यांना विविधतेची आवश्यकता असू शकतेभांडवल परिव्यय अशा प्रकारे, आपल्या फायद्यासाठी हे मेट्रिक वापरताना, त्यावर पूर्णपणे अवलंबून राहण्यापूर्वी प्रत्येक पैलूचे मूल्यांकन करा.